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Abstract

Blind analysis strategies, designed to minimize the possibility of
bias in experimental results, have become increasingly popular for
high energy analyses in recent years. In this note, experimenter bias
is discussed, motivations for blind analysis are presented, and basic
techniques are described.

1 Introduction

The use of blind techniques in mainstream science began in the 1930’s, when
the “double blind” procedure started to gain popularity in medical research.
The Oxford English Dictionary[1] defines “double blind” as:

Applied to a test or experiment conducted by one person on another in
which information about the test that may lead to bias in the results
is concealed from both the tester and the subject until after the test
is made; originally used of tests for determining the efficacy of drugs.

and gives examples of usage starting in 1937:

The data consisted of the patients’ judgments regarding changes in
pain. These data were secured in a manner relatively free of bias by
the use of the ‘blind test’. 1937 JAMA 26 June 2178/2

The study was conducted by the ‘blind’ method. The materials for
injection were unknown to the observer as well as to the subject. 1948
Amer. Heart Jrnl. XXXVI 529

The ‘internal-evaluation’ was made by skilled questioning under con-
ditions of the ‘double blind test’ in which neither the physician nor
the patient knew at the time whether the evaluation related to the
placebo or khellin. 1950 Amer. Jrnl. Med. IX 146/1
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The only safe way to obtain unbiased opinions from either of them
[doctor or patient] is to make them express their opinions without
knowing whether the patient received an active drug or not. This is
known in America as a double blind test. 1954 Proc. R. Soc. Med.
XLVII 197

Statistics and certain concepts, such as double-blind trials, are on
everyone’s mind to-day. 1961 Lancet 19 Aug. 423/1

Double blind procedures are now universally taught and employed in the
fields that experiment on human subjects: clinical research and psychology.
It has long been recognized in those fields that, to avoid experimenter bias, it
is not sufficient just to hide certain information from the human subjects; the
information must also be hidden from the experimenters by the experimenters
themselves until after the analysis is complete.

In the physical sciences, the benefits of using blind techniques to reduce
bias have been less often discussed until quite recently. Nevertheless, there is
early evidence of concern about experimenter bias in particle physics in this
statement by Rutherford:

It seems to me that in some way it is regrettable that we had a the-
ory of the positive electron before the beginning of the experiments.
Blackett did everything possible not to be influenced by the theory,
but the way of anticipating results must inevitably be influenced to
some extent by the theory. I would have liked it better if the the-
ory had arrived after the experimental facts had been established.
Ernest Rutherford[2]

Here Rutherford refers to Patrick Blackett, who won a 1948 Nobel prize for
his 1930’s experiment that used a cloud chamber to identify positrons in
cosmic ray air showers. Theorists, beginning with Dirac, had already pre-
dicted the e+, and Rutherford (1933) is obviously aware that this knowledge
of what to expect can easily bias the experiment. Rutherford’s phrase “ev-
erything possible not to be influenced by the theory” translates to our “blind
procedure”, and his “influence” translates to our “experimenter bias”.

A more recent example is associated with the search for fractional charge
in ordinary matter by a group of Stanford physicists led by William Fairbank.
Initially, in a series of results published 1977–81, the group claimed “unam-
biguously the existence of fractional charges of 1

3
e”[3]. Luis Alvarez subse-

quently proposed that “blind tests” be employed[4], in which a randomly
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chosen charge, of value unknown to the experimenters, would be added to
the data, thereby hiding the answer until the analysis was complete. Subse-
quent measurements[5] by the Stanford group did incorporate the blind test:
these did not confirm the original “discovery”.

2 Statistical Bias

There is a huge literature concerning experimenter bias—a google search for
the exact phrase “experimenter bias” locates ∼2200 web documents, and
(the synonymous) “experimenter effect(s)” yields another 2000. But only a
very small fraction of it is written by or for physicists. Before we discuss
experimenter bias, we need a definition of (general statistical) bias1, which
we quote from reference [6]:

Bias: Let d(X) be an estimator of the unknown parameter θ. The
bias is defined by

b(θ) = EX [d(X)− θ]

where the expectation EX [d] is with respect to an ensemble of random
variables {X}. The bias is just the difference between the expectation
value, with respect to a specified ensemble, of the estimator d(X) and
the value of the parameter being estimated. If the ensemble is not
given, the bias is undefined. If an estimator is such that b(θ) = 0 ∀θ
then the estimator is said to be unbiased; otherwise, it is biased. Bias,
in general, is a function of the unknown parameter θ and can, there-
fore, only be estimated. Further, bias is a property of a particular
choice of metric. In high energy physics, much effort is expended to
reduce bias. However, it should be noted that this is usually at the
cost of increasing the variance and being further away, in the root-
mean-square sense, from the true value of the parameter. See also
Ensemble, Quadratic Loss Function, Re-parameterization Invariance.

The random variable X referred to in the definition is a vector that represents
the data, and the “ensemble” contains all possible experimental results (i.e.
all possible X). The fact that the data X come from a random distribution
that depends on the unknown parameter θ means that the estimator d(X), a

1The term “bias” is heavily overloaded in Statistics. Here we refer to “point estimate
bias”—not to be confused with “test bias” or “interval bias”.
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function of the observed data, also has a random distribution that depends
on θ.

Reference [7] offers the following instructive comment on the definition of
bias:

There is some arbitrariness in this definition, since there exist other
measures of the center of a distribution which could have been used.
The expectation (or arithmetic mean) is conventionally chosen for
convenience, and because of its properties for the normal distribution.
Note that if an estimator is unbiased, this does not necessarily mean
that on the average half of the estimates will lie above θ and half
below. This would have been true if the median had been chosen
instead of the arithmetic mean.

This kind of bias is normally just an inconvenience: it can be corrected for
if necessary. The experiment, once performed, provides us with an estimate
for θ, which can be used to estimate the bias and correct the answer. For
example, defining f(θ) = b(θ) + θ, we have f(θ) ' d(X), so θ ' f−1(d(X)),
and f−1(d(X)) is our (approximately) bias-corrected estimate of θ. That is,
d0(X) = f−1(d(X)) represents a new estimator (of the unknown parameter
θ) that should remove most of the bias of the original estimator d(X).

Mere statistical bias (as defined above) is not the problem that we are
concerned with in this note. Experimenter bias occurs when human behavior
enters the equation.

3 Experimenter Bias

Let’s focus on the function d(X) which maps the raw dataX into our estimate
of the parameter θ. The idea is simple enough: the detector produces an
actual data sample X0, we calculate d(X0) (a single real number in this
example), and publish it, along with an explanation of d(X), uncertainty
estimates, etc.

But the function d(X) is typically quite complicated. It may include
detector calibration, reconstruction algorithms, efficiency or acceptance de-
termination, data selection cuts, artificial neural networks, complicated em-
pirical parametrizations of backgrounds and signal, maximum likelihood fits
with dozens of free parameters, etc. It’s complicated enough that Monte
Carlo simulation is necessary.
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The defining of d(X) for use in measuring a particular physical quantity
θ is the task of the experimenters. Once the complete specification of how
to calculate d(X) for all possible X is fixed, the methods of Statistics—
frequentist or Bayesian—will be able to characterize the relationship between
d(X0) and θ in terms of probabilities.

Experimenter bias is possible when the algorithm d(X) is modified by
the experimenter based on (partial or complete) information about the value
of d(X0). In this case, the algorithm d(X) really includes a biological neu-
ral network—the brain of the experimenter—since as X varies, the experi-
menter’s decision of the form that d(X) should take also can vary. Proper
Monte Carlo simulation of d(X) in such a case is impossible; we must include
a simulation of the experimenters’ decision process. That is, we need to know
what the experimenters would have decided for d(X) (based on their looking
at the data) for all possible data X.

Bias (in the statistical sense) will then occur through unconscious feed-
back between the choice of the algorithm d(X) and the experimenters expec-
tation of or preference for a particular result. Since this process is uncon-
scious, the danger is always present when the experimenters are even vaguely
aware of the effect of their modifications to d(X) on the difference between
the result and the expected or preferred value. Because this process is un-
conscious, it cannot be modeled properly, and therefore the actual size of the
bias can not be objectively estimated, even by the experimenters themselves.
The experimenters will not even be aware that it has occurred, although they
might admit that it was possible.

The following are examples of experimenter bias that might occur in a
high energy physics analysis:

• The data selection criteria (“cuts”) are unconsciously adjusted to bring
the answer closer to a theoretical value or a previously measured value.

• Comprehensive checks are performed if the answer disagrees with ex-
pectation, otherwise not so comprehensive. The extra checks might be
invented by the people actually performing the analysis, or requested
by godparents, physics groups, etc. (The experimenters feel more con-
fident when the answer comes out “right”.) (These checks may lead to
“corrections” that change the answer.)

• Extra systematic uncertainties are invented and attached to the answer
when it disagrees with expectations.
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• Several competing analyses are performed using the same data. The
physics group charged with making the decision chooses which is wor-
thy of publication after learning the answers, unconsciously favoring
analyses that “come out right”.

In each case, the experimenter bias is unintentional—the experimenters nor-
mally know that these practices are objectionable, but in each example, the
course of the analysis is unconsciously influenced by their knowledge of how
the outcome is affected.

Note that early knowledge of the value of an ancillary statistic should not
lead to experimenter bias. Reference [6] defines an ancillary statistic as:

Consider a probability density function p(X|θ). If the distribution of
the statistic t(X) is independent of θ and the statistic is also indepen-
dent of θ, then the function t(X) is said to be an ancillary statistic
for θ. The name comes from the fact that such a statistic carries no
information about θ itself, but may carry subsidiary (ancillary) infor-
mation, such as information about the uncertainty of the estimate.
Example In a series of n observations xi, n is an ancillary statistic
for θ. The independence of the distribution on the ancillary statis-
tic suggests the possibility of inference conditional on the value of an
ancillary statistic. See also Conditioning, Distribution Free, Pivotal
Quantity, Sufficient Statistic.

(The example given above is, perhaps, too general, and might be confusing—
“n is an ancillary statistic for θ equal to the expectation value of the xi” is
a simple example that one can easily show is ancillary.) In some cases, the
size of the uncertainty (of the result d(X0)) is itself ancillary.

Blind techniques are designed to minimize the experimenters’ exposure
to any non-ancillary statistic before the design of d(X) is finalized.

4 Historical Examples of Experimenter Bias

Examples of experimenter bias are not difficult to locate. One method is to
look for past results that agree with expectations too well (i.e. P-value very
close to 1.0). The classic case is Gregor Mendel’s 1865 work on inheritance.
Quoting from reference [8]:

In every case the data agreed with the theoretical ratios within less
than the standard errors; taking the whole together, χ2 was 41.6 on
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84 degrees of freedom, and the chance of a smaller value arising acci-
dentally is 7×10−5.

Since there was no inheritance theory when Mendel’s work was published,
Mendel (or his assistants) might have been biased by his expectations arising
from his earlier studies, or perhaps just by the simple small-integer fractions
involved. For example, in one class of (pea) population used in Mendel’s
investigations, the recessive trait of interest does occur with a probability of
1/4—once this trend was recognized in the data, there may well have been
an unconscious bias toward 1/4. If the probability had been something less
recognizable, say 9/31, the tendency toward bias might have been weaker.
(A modern scientist would have noticed immediately that his agreement with
his expectation was too good, but even this most basic statistical principle
was unknown at that time.)

Another strategy is to look for past results that are too inconsistent with
current established values. The particle data group provides a dozen histor-
ical plots with every “Review of Particle Physics”; we show the two lifetime
plots from the most recent issue [9]:
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It is important to understand that the data points show the PDG’s weighted
average of all measurements available2, so the points do not change from
issue to issue at all unless some new measurement is published (or an old

2The PDG does actually use some judgment in deciding whether to include a measure-
ment or not.
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measurement is dropped). Comparing the currently very well established
value of the K0

S mean lifetime with the early 1970’s world average, we see
that the 1970’s value is off by more that 6σ (σ being the 1970’s error-bar).
The probability for obtaining a value this far off, or further, in either direction
(due to a statistical fluctuation) is 2×10−9.

Shockingly, the same general scenario is repeated 20 years later with the
B± mean lifetime. (The 2002 PDG lifetime value, and the dotted line through
it, are added here—for some reason the figure did not get updated in the
most recent issue.) The 1992 B± mean lifetime is 8σ below the current value
(very well established with the B-factories weighing in). The corresponding
probability (or P-value) is 1.2×10−15. (In both the K0

S and B± (see [10])
cases there are excellent reasons for trusting the current value, so we do not
compute the P-value under the alternative assumption that both the current
world average and the suspect value are off by many σ (due to statistical
fluctuations) from a true value that lies between the two. This is left as an
exercise for the reader.)

Examining the B± mean lifetime plot in greater detail, one sees that the
downward deviation from the current value grows from 0.9σ in 1986, to 2.5σ
in 1988, to 4.5σ in 1990, to 8σ in 1992. But, within themselves, these values
are quite consistent with each other—only after one has a good estimate
of the true value is it evident that the world average B± mean lifetime is
consistently biased low during this period. (Since the size of the error bars
drops rapidly during this period, each point is dominated by new data.) It is
quite likely that the experimenters during this period paid too much attention
to the level of agreement between their new result and the measurements of
the recent past. If one judges whether a result is ready for publication by its
agreement with the current world average, such disasters can happen.

Blind analysis techniques can help reduce the likelihood of such problems.
Blunders can always happen, but naturally when one sees an 8σ disagree-
ment between one’s current result and the world average, one goes back and
checks3 everything very carefully. On the other hand, when the new number
is consistent with the old, there is a tendency to declare victory and move on.
This asymmetry results in a statistical bias. A better procedure would be to
list and schedule all the checks in advance of knowing the answer, and carry
them out in either case (i.e. ask the question “What would we be checking if
the answer were 8σ off?”, write it down, and then do it in any case). Strictly

3See reference [11] for an excellent discussion of checks.
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speaking, these checks are part of d(X), since they are of the form “do this
check, and if a mistake in d(X) is discovered as a result, correct it”.

5 Other Sources of Information

There are a number of recent references with information about blind analysis
in high energy physics: A good place to start is the New York Times article
by James Glanz[12]. Another source is the list of links in the blind analysis
section of Aaron Roodman’s home page[13]. Roodman is quoted in the NYT
article, and he developed the blind analysis technique that was used in the
BaBar sin 2β measurement. Especially interesting is Roodman’s link to the
“Draft Guidelines for Blind Analyses in BaBar”.

Paul Harrison, also from BaBar, wrote an excellent review of blind anal-
ysis for the 2002 Durham Conference Proceedings that is available as refer-
ence [14]. It contains several additional historical examples, as well as a
discussion of techniques.

The CDF B Group’s “Good Analysis Practices” Committee[15] has a
draft “Guidelines for Data Analysis” that explicitly discusses blind analysis,
and offers much practical advice of a more general nature. Reading this
document carefully, one discovers that some techniques that might fall under
the purview of “blind analysis” are in fact recommended for all analyses—
blind or otherwise. The collected “comments sent to the committee” are
quite interesting as well.

Closely related is the section entitled “When is a Signal Significant?” in
Byron Roe’s Probability and Statistics in Experimental Physics [16], which
discusses experimenter bias in bump hunting. Here, the experimenter searches
for new resonances by trying many variations of the cuts (or looks in many
channels)—the significance of any resulting “discovery” is likely to be over-
stated unless one can compensate somehow for the “false positives” that are
likely to occur if enough histograms are examined.

6 Techniques

At most, we can only offer rather general advice; the experimenters who are
doing the analysis must ultimately decide what is needed and what is doable.
The techniques are, in many cases, trivial.
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6.1 general principles

• It is not always possible to achieve perfect blindness in all cases. The
classic example in the medical field is when the drug being tested has
side effects with noticeable symptoms: the patients (and the doctors)
may be able to tell whether the drug or the placebo is being adminis-
tered. In such cases, one simply tries to achieve as much blindness as
one can, rather than giving up completely.

• Blind analyses can suffer from most of the problems that arise in tra-
ditional analyses—blindness is not a panacea.

• In blind analysis, one does not have to plan everything before doing
anything—it is only after the answer (or some related statistic) is known
from real data that experimenter bias is possible. One is free to try
out various plans (on simulation, or, in some cases, on real data with
the answer hidden or shifted) and modify them or reject them before
settling on the final plan.

• Blind analysis is intended to guard against experimenter bias, not
fraud. The experimenters themselves carry out the blind procedures,
which they have designed themselves to avoid knowing certain things
until the appropriate time. Blind analysis is not intended to prevent
them from cheating (i.e. pretending blindness while not practicing it).
As in the past, the experimenters are assumed to be honest and trust-
worthy unless proven otherwise.

• Besides hiding the answer from the people actually performing the anal-
ysis, another benefit of blind analysis is that it also hides the answer
from the physics group, godparents, advisers, and the collaboration in
general. Clearly, anyone in a position to recommend alterations to the
procedure, suggest checks, etc., is also a potential source of bias.

• Logically, one would hide the answer from the journal referees as well,
but this would require a change in the typical journal’s submission
procedure—for example, having a “sanitized” version of the paper
available for use by the referees, in addition to the normal version
for publication. (Additionally, one might wish to hide the experiment’s
identity—CDF, DØ, BaBar, etc.—from the referees, but this seems
hardly possible for high energy experiments.)
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6.2 hiding the answer

The most basic technique is simply not printing out the answer. In some
cases, certain subsidiary diagnostic plots also need to be re-centered to zero
mean before examination. The classic example of this procedure is the hid-
den box method, which is the established procedure in the rare Kaon decay
community. One hides the number of events in the signal region (i.e., the
box) until the cuts have been finalized and the acceptance has been deter-
mined. At the final stage, the box is opened, and the answer (cross section
measurement or limit) is computed.

6.3 shifting the answer

In some cases, it may be sufficient to shift the answer by adding a random
(but fixed and unknown) offset ∆ to the answer. For example, we suppose
that the statistical uncertainty of a measurement of sin 2β is uncorrelated
with the actual value of sin 2β (probably at least a good approximation).
One then uses ∆ + sin 2β instead of sin 2β in the fitter’s likelihood function,
and the uncertainties are invariant, but the fitter’s answer has a random
offset of unknown size or direction.

Such a random, fixed and unknown offset can be produced by a single
person using a hash function. A trivial example in C is:

#include <stdlib.h>

srand(3141591234); // set the seed for rand

const double delta = (10.0/RAND_MAX)*rand() - 5.0;

which gives a reproducible and fixed value for ∆ that is a single random
deviate uniform in the range [−5, 5]. (A defect of this example is that it is
not system independent—it may give a different answer on Linux, SGI, etc.)
Improved hashing schemes will undoubtedly occur to the reader after a little
thought.

An advantage of this approach, vs simply not printing out the answer,
is that it allows two independent groups to analyze the same real data and
compare their answers—both having the same random offset—while the real
answer remains unknown. Of course, access to the actual value of the seed
used to produce the random offset should restricted to those executing the
analysis—they are assumed to be trustworthy.
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6.4 hiding (some of) the data

In this approach one performs a non-blind analysis on a subset of the data:
the development dataset. For example, one might randomly split4 all data
event-by-event into two sets: A and B. The analysis procedure is developed
using set A—set B is not looked at all. Once the analysis algorithm is final-
ized, set A is discarded, and the analysis is run on set B, which determines
the final answer.

Unfortunately, in many cases, the experimenters don’t have the luxury
of having so much data that they can afford to throw away a significant
fraction of it. This may lead them to publish the answer using both sets,
which defeats the purpose of the procedure.

In addition, it is not clear that the procedure is always free from bias.
For example, in the course of a non-blind analysis of set A, say a top mass
measurement, the experimenters might need to do a detector calibration that
will also be used for set B. If the calibration is unconsciously altered to bring
the answer from set A closer to expectations, this bias will persist in the final
answer determined from set B.

The method seems best suited to a case where many cut variations are
tried on data in order to search for unanticipated signals (bump hunting
being a prime example), but the analysis procedure is otherwise fixed. As
discussed in [16], it is easy to be fooled by the statistical fluctuations that
mimic new effects—if enough cut variations are investigated. In such cases,
it is helpful to have the unexplored set B to confirm or refute any “discovery”
in set A.

A much better procedure, when possible, is to “hide” all of the data,
optimize the analysis entirely on Monte Carlo, and only look at the data
after the analysis algorithm is frozen. But for some analyses, the Monte
Carlo simulation does not model the data sufficiently well for this approach
to be practical. And, of course, unanticipated new physics effects are not
present in the Monte Carlo simulations.

4Often the data is split instead into “early” and “late” data sets, but this much less
satisfactory.
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7 Summary

Blind analysis techniques are recommended as a way to reduce the likelihood
of experimenter bias, thereby also reducing the rate of wrong answers. The
fundamental strategy is to avoid knowing the answer until the analysis pro-
cedure has been set. Since checks may lead to a change (or correction) of the
procedure, they should be completed, or at least scheduled, before the answer
is revealed. Despite the precautions, should a major (unanticipated, answer-
changing) bug turn up after the answer is revealed, it must be explained in
the publication, so that the readers can form their own opinion.
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